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We consider the question of whether there are any fundamental limits to the maximum time delay that can
be achieved for a pulse propagating through a slow-light medium. We include in our analysis what we consider
to be the dominant competing effects, and we show that in principle they do not lead to a limitation on the
maximum achievable time delay. From this result we conclude that, through optimization, one should be able
to delay a pulse by very many pulse lengths; the ability to do so can have important implications for the use
of slow-light methods for applications in photonics.
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There is great interest in methods that can control the
propagation velocity of light pulses through material systems
f1g. Early work in this area demonstrated that extremely slow
group velocitiessvg!cd and even superluminal velocities
svg.c or vg negatived can be obtained.

More recently, interest has turned to the use of slow- and
fast-light methods for various applications. Many potential
applications require that a pulse of light be delayed by one to
several times the pulse duration in a tunable and controllable
fashion. Specific applications in the field of high-speed all-
optical signal processing that might benefit significantly from
such controllable optical delay lines include random-access
memory, network buffering, data synchronization, and pat-
tern correlation.

However, it has not been clear what physical processes, if
any, can lead to a limitation on the total delay that a pulse
can experience. Equivalently, it is not clear whether there are
any fundamental limitations on the information storage ca-
pacity of a slow-light medium. For instance, the maximum
fractional time delay reported to date appears to be the value
of approximately 4 reported by Kasapiet al. f2g; many ex-
perimental studies have achieved only considerably shorter
time delays. In this paper, we perform a theoretical study of
processes that could limit the total time delay. We conclude
that, while these processes can impose severe practical limi-
tations, there is no fundamental limit to how large the time
delay can become. Similar conclusions were reached by Har-
ris et al. f3g for slow light based on electromagnetically in-
duced transparencysEITd; our treatment differs in that we
consider EIT under somewhat different conditions and in that
we consider additional processes that can produce slow-light
propagation.

Let us first note that the time delaysthe group delayd that
is experienced by an optical pulse in passing through a ma-
terial system of lengthL is given by

Tg =
L

vg
=

Lng

c
, s1d

where

ng = n + v
dn

dv
s2d

is the group index andn is the conventionalsphased refrac-
tive index. It is also useful to introduce the material contri-
bution to the group delayTdel=Tg−L /c, which is the differ-
ence between the group delay and the delay experienced
upon propagation through an equivalent distance in vacuum.
This quantity is given by

Tdel =
L

c
sng − 1d. s3d

Equation s3d demonstrates that the maximal time delay is
determined by the value of the group index and by the maxi-
mum possible valueLmax of the propagation distanceL
through the material medium. This maximum propagation
distance can be limited by physical processes such as absorp-
tion and diffraction effects. Absorption effects can be quite
appreciable, because it is often necessary to work at or near
an absorption resonance to obtain a large value of the group
index. However, techniques such as EITf4g or coherent
population oscillationssCPOd f5–7g are often used in slow-
light experiments to minimize or even essentially eliminate
the effects of material absorption. Diffraction effects can also
limit the effective value ofLmax to the Rayleigh range of the
incident laser beams. However, diffraction effects can be
eliminated entirely by working in an optical fiber or other
guided-wave structure.
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There are other potential limitations to the maximum time
delay imposed by the spectral variation of the optical prop-
erties of the material system. Since a light pulse necessarily
has a nonvanishing spectral width, these effects are intrinsic
to the propagation of pulses through a slow-light medium. To
treat these effects explicitly, we consider the propagation of a
pulse whose frequency is close to that of a transparency win-
dow, such as that created by EIT or CPO. For the present, we
assume that the shape of transparency window corresponds
to a Lorentzian-shaped dip in the frequency dependent ab-
sorption coefficient; later in this paper we consider the con-
sequences of non-Lorentzian line shapes. We thus assume
that the absorption coefficient of this material can be de-
scribed by the expression

asdd = a0S1 −
f

1 + d2/g2D < a0Fs1 − fd − f
d2

g2G , s4d

where a0 is the value of the background absorption,d=v
−v0 is the detuning of the optical frequencyv from the
resonance frequencyv0, andg is the linewidth of the trans-
parency window. In much of the ensuing analysis, we will
use the secondsapproximated form, which is reasonably re-
liable for d,g. In these equations,f is a parameter that
describes the depth of the transparency window; complete
transparency at line center occurs forf =1. We allow this
possibility because complete transparency cannot be ob-
tained in many practical situations.

According to the Kramers-Kronig relations, there will be
a contribution to the refractive index associated with this
absorption feature so that

nsdd = n0 + fSa0l

4p
D d/g

1 + d2/g2 < n0 + fSa0l

4p
D d

g
S1 −

d2

g2D ,

s5d

wheren0 is the background index; under most situations of
interest the contribution ofn0 to the group index is very
much smaller than that of the second term and will be
dropped from the ensuing analysis. From the definitions2d of
the group index, we immediately find that

ng < fSa0l

4p
Dv

g
S1 −

3d2

g2 D . s6d

We then find that the material delay of Eq.s3d is given by

Tdel <
fa0L

2g
S1 −

3d2

g2 D s7d

and that the fractionalsor normalizedd group delay for a
pulse of lengthT0 is given by

Tdel

T0
<

fa0L

2gT0
S1 −

3d2

g2 D . s8d

Let us now examine the physical processes that might
limit the maximum value of the fractional delay. One such
process is group-velocity dispersion. We see from Eq.s8d
that the fractional delay will be different for different fre-
quency components of a spectrally broad pulse. A pulse of
duration T0 will have a frequency spread of the order of

1/T0. For a pulse centered on the transparency window, the
spread in fractional group delay will be the difference in
group delays ford=0 and ford<1/T0, and is given by

DSTdel

T0
D <

3f

2

a0L

g3T0
3 , s9d

and represents pulse spreading due to second-order group-
velocity dispersion at the center of the transparency window.
If we restrict the allowed temporal spread in this quantity to
a value of unitysthat is, the pulse is allowed to broaden in
time by no more than a factor of 2 in passing through the
mediumd, we find that the length of the interaction region is
limited to a maximum value ofLmax=2g3T0

3/3fa0.
Through use of Eq.s8d, we find that the fractional delay is

limited by this process to the value

STdel

T0
D

max
=

1

3
g2T0

2. s10d

We emphasize that there is no limit on how large the quantity
gT0 can become. Indeed, one would usually want the pulse
duration T0 to be long compared to 1/g so that the entire
spectrum of the pulse fits within the transparency window.
Note also that the limitgT0@1 is consistent with the limit of
validity of the approximate form of Eq.s4d, which was used
in this argument. We also see that there is no formal depen-
dence of Eq.s10d on the fractional transparencyf. However,
in practical situations the time delay would be limited by
strong absorption, unlessf is nearly equal to unity.

Another potential limiting process is the spectral reshap-
ing of the incident pulse due to the frequency dependence of
the absorption coefficient of the material, as discussed previ-
ously by Harriset al. f3g, Cao et al. f8g, and Macke and
Segardf9g. To treat this effect mathematically, let us assume
a Gaussian spectral dependence of the incident pulse such
that

Asdd = A0e
−s1/2dd2T0

2
. s11d

After propagating through the medium, the pulse spectrum
will be given approximately by

Asdd = A0e
−s1/2dd2T0

2
e−fa0sd2/g2dLeikL, s12d

where k=sv /cdfn0+ fsa0l /4pdsd /gdg. Such a pulse will
have a durationT given by

T2 = T0
2 + fa0L/g2. s13d

If we argue as above that the propagation distance is limited
by the constraint that the pulse length not broaden by more
than a factor of 2, we find thatLmax=3T0

2g2/ s2fa0d. By in-
troducing this value into Eq.s8d, we find that the maximum
normalized delay is limited to

STdel

T0
D

max
=

3

2
gT0. s14d

As noted above, the quantitygT0 is necessarily greater than
unity. Thus, Eq.s14d constitutes a more restrictive condition
than does Eq.s10d. Since the quantitygT0 possesses no ob-
vious physical upper bound, this treatment shows that long

BOYD et al. PHYSICAL REVIEW A 71, 023801s2005d

023801-2



time delays and long fractional time delays should be achiev-
able upon propagation through a slow-light medium. Note,
however, that to achieve the delay given by Eq.s14d, it is
necessary that the medium possess a reasonably large optical
depth sbefore saturationd given by a0L=s4/3dsTdel/T0dmax

2 .
From Eq.s14d, we can also establish a relationship among
the resonance widthg, the bit rateB, and the maximum time
delay. In a typical communication system, we have thatB
.T0

−1, so that

g =
2

3
BSTdel

T0
D

max
. s15d

Thus, the required resonance width must be larger than the
bit rate by a factor of the order of the desired maximum
normalized time delay. However, it should be noted that the
data signal bandwidth depends on the specific modulation
format and coding scheme employed.

To illustrate these points, we show in Fig. 1 the results of
a numerical simulation of pulse propagation though a slow-
light medium. The simulation was performed by solving nu-
merically the reduced wave equation with optical responses
given by Eqs.s4d ands6d using a Fourier transform method.
In this example, a pulse is delayed by 75 pulse lengths under
realistic laboratory conditions. The pulse undergoes some at-
tenuation and some broadening, but the overall integrity of
the pulse is well preserved. The input pulse width isT0
=50g, the residual absorption is such that 1−f =8310−5, and
the interaction path length is such thata0L=7500. The re-
sidual absorption at line center is thus equal tos1− fda0L
=0.6. Based only on the residual absorption, one would ex-
pect a transmission of 0.55, whereas the simulation shows a
peak transmission of 0.13. The lower peak height in the
simulation arises from two factors:s1d the pulse is wider, and
thus the peak is lower; ands2d there is some absorption of
the tails of the spectrumf10g.

Now that we have established some of the basic principles
governing the time delay possible upon propagation through

slow-light media, we turn next to an analysis of specific pro-
cesses that can lead to slow propagation of light.

Electromagentically induced transparency. Much of the
initial research on slow-light pulse propagation was con-
ducted using an EIT resonance. The transparency window is
approximately Lorentzian of the form given by Eq.s4d under
appropriate conditions. To make a comparison with our
analysis, consider the complex linear susceptibility for the
resonance, which is given byf1g

xs1d = −
a0c

v

fisd − Dd − gcag
sid − gbadfisd − Dd − gcag + uVs/2u2

, s16d

wheregba is the coherence dephasing rate for the electronic
transition driven by an intense coupling field of Rabi fre-
quencyVs, D is the detuning of the coupling field from this
transition, andgca is the ground-state dephasing rate. For a
dilute medium, the refractive index and absorption coeffi-
cient are given by Imfxs1dg /c. Under the assumptionsD=0,
gca!gba, Vs!gba, andd!gca, we find

f =
uVs/2u2

gcagba + uVs/2u2
, g =

uVs/2u2

gba
. s17d

Thus, the first of Eqs.s17d demonstrates that it is possible to
achieve a high degree of transparencysf →1d when uVs/2u2
@gcagba, in which case the fractional time delay of Eq.s14d
becomes

STdel

T0
D

max
=

3

2

uVs/2u2T0

gba
. s18d

Since the EIT resonance is non-Lorentzian, there is the
possibility of partially canceling the pulse distortion resulting
from frequency dependent absorption, thereby increasing
Lmax and obtaining a time delay greater than that given by
Eq. s18d. Indeed, we find that it is possible to cancel the
lowest-order contribution to the distortion by setting

UVs

2
U2

=
gca

3

gba
. s19d

However, under this condition one finds thatf .gca
2 /gba

2 ,
which approaches zero under normal EIT conditions. There-
fore, the pulse will experience large absorption, offsetting
any benefit of canceling the lowest-order contribution to the
pulse distortion.

We note that Harriset al. f3g previously investigated the
maximum relative time delay for an EIT system. They as-
sumed that residual absorption at the center of the EIT reso-
nance is the limiting effect so thatLmax=f2s1− fda0g−1, re-
sulting in a limited time delay. However, we note that it is
possible to achieve very high transparencysf →1d in an EIT
system so that the frequency dependence of the absorption is
the dominant source of pulse distortion, as we assumed in
our model discussed above.

Coherent population oscillations. Another process that
has been used to produce slow light is coherent population
oscillationssCPOd f11–14g. CPO lead to transparency win-
dows for which the absorption coefficient has a width of the
order of T1

−1, whereT1 is the population relaxation time of

FIG. 1. Numerical simulation demonstrating a large pulse delay
in a slow-light medium. The intensity evolution of a Gaussian pulse
emerging from the medium for the case of vacuumsdashed lined
and a slow-light mediumssolid lined with a0L=7500, 1−f =8
310−5, and gT0=50 is shown. The relative time delay isTdel/T0

=75, as predicted by Eq.s14d. The inset shows the vacuum and
delayed pulses overlaid so that their peaks coincide; it is seen that
the delayed pulse is approximately twice as wide and remains
highly symmetric.
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the material system. CPO have been shown to lead to slow-
light propagation at room temperature, which is possible be-
cause this process is largely insensitive to the dephasing of
the atomic coherence. The CPO process was described theo-
retically by Schwartz and Tanf11g. Treatments closely re-
lated to that of the present work include Refs.f14,15g.

The experiments on slow propagation in rubyf5g and al-
exandritef6g were both conducted in the rate-equation limit,
that is, under conditions such that the dephasing rateT2

−1 was
much larger than both the population relaxation rateT1

−1 and
the Rabi frequencyV=2mE/". In this limit, a simple ana-
lytic expression for the shape of the transparency window
can be obtainedfsee Eq.s15d of Ref. f14gg. One finds that

asdd = a0F1 −
I

d2T1
2 + s1 + Id2G , s20d

where I =V2T1T2 is the saturation parameter, which can be
interpreted as the intensity of the pump laser normalized by
the saturation intensity of the material medium. We see that
the spectral hole always has a Lorentzian shape. Thus, the
model of slow-light propagation developed above is directly
applicable. Therefore, by comparison of Eq.s20d with Eq.
s4d, we find that

f =
I

s1 + Id2, g =
1

T1
s1 + Id. s21d

Sincef takes on its maximum value of 1/4 atI =1, complete
transparency is never achieved. However, this conclusion is
valid ony within the rate-equation limit; outside of this limit
complete transparency can be obtainedf14g. The fact that
complete transparency cannot be obtained can be understood
in terms of the results21d that the linewidth shows power
broadening as the factors1+Id. Conventionalsnon-CPOd
power broadening shows a dependence ofs1+Id1/2.

The group index at line center is found from Eq.s6d to be
given by

ng =
1

2
a0cT1

I

s1 + Id3 . s22d

Since there is substantial residual absorption for the CPO
resonance, we set the maximum propagation distanceLmax
equal to the inverse of the absorption given by Eq.s20d
evaluated at the center of the transparency window. We find
that

STdel

T0
D

max
=

T1

2T0

I

s1 + Ids1 + I + I2d
. s23d

The second factor can never be larger than 0.19, which oc-
curs forI =0.57. SinceT0 must be greater than approximately
T1 in order for the spectrum of the pulse to fit within the
transparency window, this model predicts that the fractional
delay cannot exceed approximately 10%, in agreement with
the best reported experimental resultsf5,6g.

Summary. We have developed simple physical arguments
which suggest that there is no fundamental limit to the frac-
tional time delay experienced by an optical pulse propagat-
ing through a slow-light medium. Delays of four pulse
widths have already been observed in the case of an EIT
slow-light mediumf2g. To date, only delays smaller than
unity have been observed in CPO media. The analysis pre-
sented here suggests that the small fractional delays occur as
the result of operating in the rate-equation limit. There is the
expectation that much longer delays, which are in principle
unlimited in magnitude, can be obtained in CPO media when
operating outside of this limit, in that theoretical models pre-
dict that complete transparency can be obtained. We also
emphasize that limitations imposed by signal attenuation are
relevant only to the case of propagation through an absorbing
medium. For propagation through a saturable amplifier,
strong modification of the group velocity unrestricted by ab-
sorption should occur.
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